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Abstract. When it comes to planning for joint human-agent activities,
one has to consider not only flexible plan execution and social constraints
but also the dynamic nature of humans. This can be achieved by pro-
viding additional information about the characteristics of a human. As
an example one need to take the physical and psychological condition of
the elderly into consideration when developing collaborative applications
like socially assistive robots. This work outlines HPLAN, an extension to
the agent-framework JIAC V, that takes this requirement into account.
HPLAN is strongly related to the conceptual model of dynamic planning
components and integrates humans as avatars into a life cycle of plan-
ning, execution and learning.

1 Introduction

Following H.H. Clark [5, p. 3|, joint human-agent activities can be defined as an
extended set of actions that is executed by an ensemble of natural and artificial
agents who are coordinating with each other [5, 16]. These agents coordinate to
overcome their inherent limitations. As examples, consider agents with a sensory
malfunction (perception level), humans with a disease like dementia (cognition
level) or robots that are not able to overcome obstacles like stairs (execution
level).

Planning procedures that account for joint human-agent activities are computed
by Human-Aware Planning (HAP) components [4]. HAP is mainly required when
the situation involves artificial and natural agents in the same environment, the
actions of the artificial agents being planned and those of the natural agents be-
ing predicted only. One assumption of currently available human-aware planning
components (e.g., [2-4,14,19]) is that whenever a human is predicted to fulfil
a task, the human will provide results in a timely fashion. This assumption is
questionable since the ‘Quality of Behaviour’ that a human is able to provide
differs for each human. For instance, consider the activities of daily living [23]
(ADL)—a measure for the self-sustainability of elderly people. Whether an el-
derly person is able to perform an ADL depends on the persons physical and
psychological condition. Therefore it is necessary for planning agents to take such
information into consideration. This work presents the first steps to use this kind



of information and to relax the mentioned assumption to a more general one.
That is, whenever a human is predicted to fulfil a task, the human may perform
the task or not and provide results either in time or delayed [1]. We introduce an
extension to the agent-framework JIAC V [13,17] named HPLAN, which enables
the development of joint human-agent activities by providing three capabilities:
(1) a generic link to several AI planners, (2) the use of additional information
to influence the action selection of a planning process and (3) the integration
of reinforcement learning techniques to adapt the additional information to the
individual [7].

Indeed, the main contribution of this work is the presentation of an implementa-
tion, as the related work mainly presents conceptual frameworks. For example,
Kirsch et al. [14] proposes a combination of TRANER and RoLL. TRANER is a
planning system providing a library of reactive plans for autonomous household
robots. RoLL is a robot programming language with a strong focus on machine
learning. The combination of both enables to transform the available plans based
on experience made during the execution. The work states that the strength of
the system are not applied planning/learning techniques but the concept of com-
bining two frameworks to facilitate joint human-agent activities. Alami et al. [2]
propose to adjust the planning process to different types of humans using Inter-
ActionAgents each one providing information about an individual. The concept
lacks details about the use of such information during the actual planning. Cir-
illo et al. [4] presents a more advanced solution combining activity recognition
and the conceptual model of planning components. Other existing approaches [3,
19] plan without providing additional information about the human agents. Nev-
ertheless, several authors emphasise to take such information into account [15,
19].

The remainder of this work is structured as follows. First, we will outline the big-
ger picture of our study using the already mentioned example of planning ADL,
e.g. when developing socially assistive robots [22] in Section 2. In Section 3 we
describe the approach combining available techniques to create a development
environment for joint human-agent activities. Section 4 presents a technical eval-
uation using the Blocks World [11], where humans as additional actors suffering
from weakness are introduced and cooperate with a robot to solve Blocks World
problems. This scenario is far away from a real-world scenario and simulates a
cooperative setting. Nevertheless, it was chosen to technically evaluate whether
the design-decisions done are applicable to cooperative settings and to gain first
experiences developing applications with HPLAN. Eventually, we conclude the
work and give an outlook on future work in Section 5.

2 Motivation

To outline the objective of the work, imagine a socially assistive robot helping
elderly people to stay independent at home. Such a robot should support the
elderlies in the activities of daily living. Here older adults and robots cooperate
to maintain the personal autonomy of the elderly. Yet, the aim of the cooperation
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Fig. 1: Eating is one of the activities of daily living, visualised here as a hierar-
chical task network describing the decomposition of the complex task ADLcaing
to atomic actions (e.g. a possible leaf named pay for ingredients). Whether an
elderly person is able to perform the task depends on its physical and psycholog-
ical condition making the availability of such information necessary for agents
planning procedures. The goal of our approach is to provide an estimate of the
likelihood that an action is successfully executed by the human.

it not to leave all task to the artificial agents, but to help the human as much as
necessary and as little as possible. Planning for this kind of joint human-agent
activity requires knowledge about which agent—the artificial or the human—
can perform which task and how likely the task is achieved. For this purpose
the agent planning needs to predict the course of action of the human. Fig. 1
illustrates this objective for the ADL eating that comprises not only the actual
consumption but also preparation and follow-up tasks.

The main objective of our work is to provide more information about the human—
in terms of habits, abilities, personality and behaviour—and to use this informa-
tion to sharpen the likelihood that the human can/will fulfil a task. For instance,
the ability of a human to slice ingredients during the prepare meal task depends
on the physical and psychological conditions of the human. These conditions
can be influenced by diseases like Parkinson and its accompanying symptoms
like tremble. As another example, weakness as a symptom of several diseases
can diminish the ability to set up or clean up a table. To sharpen the estimated
value of how good a human can fulfil a task, we want to investigate the use of
additional information in combination with learning techniques. In particular,
we do not aim to implement a new planning system but use existing ones as
black boxes.

3 Approach

The goal of this work is to present a way to provide more information about
humans to the planning process of joint human-agent activities. We want to
accomplish this in terms of a more accurate cost estimate for specific capabilities.
The costs are used to indicate the likelihood that a task will be performed, i.e.



lower cost indicates a higher likelihood and vice versa. We do not aim to develop
a new planner, but to use existing solutions as far as possible. In consequence,
our approach is to use the cost estimates to influence the action selection of a
planning process, where the actual planning procedure is a black box. The idea is
to integrate the costs into the planning process providing a—roughly speaking—
dynamic heuristic about the possible course of action of a human user. Sisbot et
al. [20] already showed the usefulness of this idea in the adjacent research field of
Human-Aware Navigation. The authors used the A* search algorithm [12] for the
motion planning of robots. Such robots should avoid to approach humans from
behind during the motion. To accomplish this the authors attached higher cost
to actions in the back of humans and thus influenced the path-finding without
changing the algorithm.

3.1 Agent-Model Construction

To transfer this idea to a collaborative setting, we represent each human as
part of the agent-system similar to the concept of InterActionAgents presented
by Alami et al. [2]. In this work avatars named actor agents each represent a
human or an artificial agent. Each actor agent representing a human provides
information about the capabilities and the personality of the human. In a formal
way this can be expressed using the following agent-model for an actor agent ay:

{A,,, P,, ,cost : A, x P, — R}

Here, A,, C A is the set of capabilities (actions) that a human is able to pro-
vide. In our example, A,, would include actions necessary for the activities of
daily living. The behaviour of a human is represented by the set of personal-
ity P,, C P, where each p € P represents a personality trait with range [0, 1].
This abstraction serves as a wild-card for a specific type of information. For our
example, this might be a psychological trait from a theory like the Five Factor
Model [18] or information about a disease. The agent-model is completed with
the relation cost between actions and personality. This relation is used to dy-
namically assign costs in terms of a real number to each action, which will later
be used to generate plans with minimised costs.

3.2 Planning for Joint-Human Agent Activities

A system suitable for a planning process for joint human-agent activities needs
to create a plan, execute it, learn from the execution and start over. Therefore
it must be able to determine the current state of the environment, to detect
failure and to replan if necessary. Furthermore, experiences generated from the
execution of actions must be used to improve the task delegation process.

Concept Fig. 2 illustrates the architecture of our approach and visualises the
relationship to the conceptual model for dynamic planning systems introduced
by Ghallab et al. [10, p. 9]. Here, the controller handles the execution of plans
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Fig. 2: High-level architecture of HPLAN visualised as part of the conceptual
model for dynamic planning components (greyed out) [10, p. 9]. The planning
capabilities are provided by planning agents, which can be actors as well. The
initial domain description encloses no action descriptions as the available actions
are only provided by the actors at runtime. The process starts with a new objec-
tive triggering an agent with planning capabilities to query all available actors.
The actors then provide an action description and a cost estimate for each action
that they want to offer for the planning process.

generated by the planner based on an initial state and a set of goals that are
provided by an external source. The controller executes actions, processes obser-
vations from the environment and informs the planner about the plan execution
status. In our approach, a controller contains a set of actors, each representing
a human or an artificial agent that is capable of manipulating the environment.
The planning process for a new objective starts by querying all actor agents
about their available actions and the associated cost predictions to generate a
full domain description. The query is executed by an agent with planning capa-
bilities, which can be an actor agent or an agent solely responsible for planning
processes. The queried information is used to generate a plan in which each task
is delegated to the most capable agent. During the execution, the observations
generated in the environment are evaluated by the associated actor. If a failure
occurs, it is reported back to the planner to trigger replanning. Furthermore,
the actor agents representing a human learn from each execution experience and
adapt their cost predictions accordingly, therefore completing the life cycle of
planning, executing and learning.

Implementation The described structure was implemented as an extension mod-
ule for the agent-framework JIAC V [13,17] (Java Intelligent Agent Component-
ware — Version V). We extended the action annotation process used in the agent-
framework with the ability to annotate human-action descriptions. In JIAC V
the expose annotation is used to declare an agent’s actions. Listing 1.1 shows
an annotation for an action named slicelngredients. At runtime all relevant in-
formation is extracted from the annotation and its attributes. Here, the name
of an action is used to register it in the dictionary of each agent platform (the
dictionary is a yellow-page service). The scope of the action is used to control



QExpose (
name = ADL_EATING_PREPARE_SLICE,
scope = ActionScope.GLOBAL,
actor = ActorType.HUMAN,
descr = ADL_EATING_PREPARE_SLICE_DESCR
cost = ADL_EATING_PREPARE_SLICE_COST
)
public void sliceIngredients (){
// Implementation of user interaction

Listing 1.1: Example of annotating actions when developing actors that represent
humans.

its visibility. It controls whether the action is visible to all existing agents, to
the agents on a single platform or only to the agent owning such action. The
actor defines if an action is provided by an artificial or natural agent. The de-
scr provides the action description in the selected planning language. The cost
attribute holds the current cost estimate for this action by this actor. This esti-
mate is automatically embedded into the action description when the planning
agents queries the multi-agent system about the available actions.

As indicated in the listing, developers have to provide a description for an action
and the way the actor interacts with the human user when the action is used.
Developers are not required to implement the action’s logic, as the action will
be executed by humans. For the actual planning, we implemented a planning
module using the planning library Planning4J.! This approach enables planning
with various AI planners, even if they are written in other programming lan-
guages than Java. Actions are described using the planning language PDDL [9],
which was objectified to ease the manipulation of the associated action costs and
to support reusability. We use the concept of numerical fluents first introduced
in PDDL2.1 [8] to assign costs to actions. Furthermore, we use the minimisation
plan-metric—also first introduced with PDDL2.1—for the quantitative directive
of plan creation.

3.3 Stateless Q-learning to estimate Costs

We apply stateless Q-learning [6] in order to estimate the expected costs of
executing an action according to the personality traits of an agent. We drop the
state dependency as the goal of this work is to learn the ability of an agent to
fulfil a specific task, not to learn the utility of an action in a specific state of the
environment, which will be done in the future.

By definition, a learning agent interacts with its environment by performing an
action a at time t. In return, the agent receives a reward r:(a) and iteratively
improves its estimate Q:(a) of the expected reward for each action a. In other
words the agent builds an estimate of the expected costs of executing an action

! For more information about Planning4J and the supported AI planning solutions
the interested reader is refereed to https://code.google.com/p/planning4j.




a. This estimate is iteratively updated using the following equation, known as
the Q-learning update rule. Here, the parameter o with range [0, 1] denotes the
learning rate, helping to control the influence of new experiences to the current
cost estimate:

Qu1(@) = Qi) +a (ri(@) — Qi(a)).

We choose the Q-learning update rule because the sample-average method would
not react fast enough to changing capabilities of humans in the long run (e.g., if
a human gets tired of performing a repetitive task). To learn from feedback, the
effects of actions have to be evaluated by some criteria according to the type of
the reward signal. Such a reward signal can be of qualitative (e.g., in terms of
‘failure’ and ‘success’) or quantitative nature (e.g., in terms of time steps required
to execute an action). As both signal types require different computation and the
interpretation of the reward signal is domain dependent, we developed different
interfaces to encapsulate the actual implementation. Fig. 3 shows a more detailed
view of an actor agent and introduces some of the interfaces, which are provided
for developers.

Planner Controller System ¥
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A |
Ac .
Actor implements IActorAgent —Actions—»
ﬁReward*‘
ActorLearner ActorCritic
" implements implements «—Observations
Execution status |ActorLearner |ActorCritic

Fig. 3: A more detailed view of an actor agent. Each JIAC V agent consist of sev-
eral components named AgentBeans which encapsulate functionalities. An actor
representing a human is equipped with at least two AgentBeans, one named
ActorCritic and one named ActorLearner. The ActorCritic evaluates the obser-
vations and is responsible for generating the reward signal. In other words, the
ActorCritic preprocesses observations, which can for example be derived from
sensor signals, to generate a computable reward signal such as ‘failure’ or ‘suc-
cess’. The ActorLearner then uses these reward signals to adjust the cost of the
associated actions using machine learning techniques. In its current implemen-
tation the ActorLearner uses stateless Q-learning.

The above-mentioned learning procedure is applied by the available actors each
time they manipulate the environment. Agents with planning capabilities then
use this information to produce plans with minimal overall costs. To ensure that
the approach is able to reach minimised plan costs, we applied the e-greedy policy



as the action selection strategy (if not otherwise stated we use an exploration
rate of e = 0.1) [21]. This guarantees that Q:(a) converges to Q*(a) for t — oo,
where Q*(a) is the mean reward received when a is executed [21].

4 Case Study

We used a classical planning problem—the Blocks World [11]—to evaluate the
presented approach. The Blocks World in our evaluation scenario contains two
types of effectors, namely robots and humans. Each can move blocks, but the
efficiency of humans is higher on average. Humans suffer from weakness and in
consequence have the potential to make errors for tasks that involve boxes that
are more than one level of the ground. Related to our examples, this might be
the task to carry dishes from the table to the wall cupboard or vice versa. We
introduce two types of errors: Failure at moving a block (denoted as external
factor ext.) and the timely execution of moving a block (denoted as external
factor ext,). The external factors (ext.,) serve as hidden properties not acces-
sible to the planning system and not known to the human-agent representing a
human. In consequence, the human-agent must observe the environment during
the action executions by its associated human. To represent this information, we
use the hidden properties as personality traits for the actor agents representing
the human. The goal is to determine the helpfulness of a human being to reach
a given goal with Pyprp = {pc, p-}. Cooperation (p.) measures a human’s abil-
ity to fulfil a task. It indicates the likeliness that the human succeeds or fails
to execute a given task. Reliability (p,) measures a human’s ability to provide
results either in time or delayed. It indicates the likeliness that a task will be
processed in time and the expected time delay.

Level 3 A F
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Level 1 C E B C
 —
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Fig.4: Evaluation scenario visualising the initial state (left) and the goal state
(right). Each action that is executed by a human actor more than one level of
the table triggers weakness.

Fig. 4 shows one evaluation scenario. Given this scenario, we are able to manually
calculate minimal plan costs for different cooperation and reliability values. To
test whether the system adapts to dynamic external factors during runtime, we



change the human behaviour after n = 50 solutions from ext. = 0.3, ext,, = 1.6
to ext, = 0, ext, = 1, simulating a human that does not suffer from weakness and
requires one time step to execute each action. After 50 experiences at n = 101
we restore the previously used external factors, simulating a human that fails in
30% of all weakness triggering tasks and requires 1.6 time steps to execute such
actions. The change in behaviour enables us to observe the ability of the system
to adapt a model that was already learned.

Given these requirements, we implemented an actor agent that is able to process
observations to determine the helpfulness of a human. Here, the ActorCritic
distinguish a qualitative reward signal in terms of ‘failure’ and ‘success’, which
is used to learn p., and a quantitative reward signal in terms of time steps
required to execute an action, which is used to learn p,. As both require different
computation, the reward signal is processed using the following twofold equation:

ri(a) — {p x c(a) if ‘failu.re’
Ai(a)  otherwise

Here, the parameter p is a constant factor to punish the execution of an action a
if the execution has failed, whereas c(a) < Q¢ (a) is the initial cost estimate for
action a provided by the developer. The execution time of an action a is denoted
as A¢(a).

To determine whether the system improves the cost effectiveness of solving a

— Zi%o%n ¢4 golve the problem after n

problem, we use the average cost C," o

previous experiences averaged over m rounds. Each experience solves one in-
stance of the problem, including necessary replannings. The use of this average
value removes statistical variations introduced by ext. and ext, for large num-
bers of m. If not explicitly stated, we will use n = 1...150,m = 100 for the
experiments. Furthermore—in a real world scenario—humans would expect the
planner to produce legible behaviour and therefore consider if a human feels safe
and comfortable [15]. Using the cost-progression is not suitable to show this, as
a human has a different point of view on what an optimal plan is. Humans in
our scenario would prefer a plan that delegates as few weakness affected tasks
to them as possible if they are suffering from weakness. Humans suffering from
weakness might also not want to be frequently asked to execute tasks they are
not able to perform.

Fig. 5 illustrates the number of tasks inducing weakness that are assigned to
the human agent and the robot. The number of weakness affected tasks that
the human has to execute decreases significantly for the two stages in which
the human suffers from weakness. The graph confirms that tasks that are not
executed by the human are executed by the robot instead. At the beginning of
stage; more weakness affected tasks are executed by the human than required
to solve the problem. This is due to the fact that a number of failures occur
and the tasks therefore have to be executed multiple times (underpinned by the
number of replannings). As the planner delegates all tasks to the human at first,
the human executes up to 5.4 tasks to solve a problem. Note that this behaviour
was expected as in the initial action description the humans performance were
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Fig.5: Diagram shows the number of weakness triggering tasks executed by the
human agent, number of task executed by the robot, number of replannings
done during the simulation and the overall cost-progression (o = 0.1). The
optimal plan costs are stage; 3 = 12,stages = 8. In stagep the human does
not suffer from weakness, to test whether the system adapts to dynamically
changing behaviour. For evaluation purposes we used scenarios small enough to
enable cost calculation manually.

assumed higher on average (2 : 1). This was done to ensure that the planner
tries to assign actions to the human actor frequently. At the end of stage; the
planner is correctly confident that the human is not suffering from weakness and
the human is delegated all four weakness affected tasks that are required to solve
the problem. At the transition point between stages and stages the planner is
still confident that the human does not suffer from weakness. The human then
changes its internal model and the system again has to replan multiple times
until it adapts to the failure rate of the human agent. This creates a peak in
the number of weakness affected tasks executed to solve the problem. Associated
with this observation the costs drop to the near optimum during all three stages.

To show that the system learns problem independent, we tested the use of an
already adapted model to solve other problems. To show this, we replace the
problem with a different one after n = 30. The time-optimal solution plan for this
problem takes 8 time steps. If the system does indeed learn problem independent
behaviour, we would expect the system to perform efficiently on the second
problem without adaptation. Fig. 6 shows, that the system reaches an near
time-optimal solution on the second problem without additional adaptation (also
underpinned by the number of replannings). We can therefore conclude that
the system does not simply learn problem specific behaviour but indeed learns
the hidden properties of the human agents. Furthermore, we can conclude that
the additional information forwarded in terms of a more accurate cost estimate
influence the action selection of the planning process in a positive manner.
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Fig. 6: Cost progression and number of replannings when changing the problem
during runtime (n =1...60,m = 100,e = 0.01).

5 Conclusion

We presented an agent-based architecture named HPLAN that facilitates the
development of joint human-agent activities. HPLAN is strongly related to the
conceptual model of planning and implements the life cycle of planning, execut-
ing and learning. The related work shows that contemporary solutions lack in
terms of learning and adapting to humans and in consequence sacrifice potential
in terms of planning efficiency and the generation of legible behaviour. The pre-
sented technical evaluation shows that our approach is able to reach near optimal
plan cost after a short number of experiences. The approach also reduces the
number of non-optimal action assignments to humans. The evaluation results
indicate, that the concept of forwarding additional information to the planning
component is promising in terms of a more accurate cost estimate. Neverthe-
less, the case-study is just a technical evaluation of the system emphasising that
HPrLAN facilitates the implementation of joint human-agent activities. In future
work it will be interesting to see if using one Q-learner for each information
is applicable for real-world applications. Furthermore, currently each additional
information influences the cost of each action, leaving the actual context out
of consideration. It might be necessary to find a more fine-granular way since
the ‘Quality of Behaviour’ a human is able to provide not only differs for each
human but also differs for several contexts.
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